Premio "Vincenza Celluprica" IX edizione-2016

PhD thesis in "Fundamental and Applied Physics"

Extreme Regimes in Quantum Gravity

Emmanuele Battista Università degli studi di Napoli "Federico II"

Supervisor: Giampiero Esposito, Primo Ricercatore INFN

The title of the thesis: why "Quantum Gravity"?

• General Relativity: one of the most elegant and exciting theory of theoretical physics describing the features of the gravitational fields.

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}$$

+

 Quantum field theory: a synthesis of quantum mechanics and <u>special</u> <u>relativity</u> describing physical phenomena at microscopic level.

The title of the thesis: why "Extreme"?

Thesis divided into two parts:

- First part: low-energy limit of quantum gravity:
 - Quantum gravity as an effective field theory
 - The restricted three-body problem: 1.Quantum effects on Lagrangian points

- Second part: high-energy limit of quantum gravity:
 - The Boost of a metric:
 - 1. Gravitational shock-wave
 - 2. The Boosted Schwarzschild-de Sitter metric
 - 3. The "boosted horizon" and the singularity 3-sphere

Effective field theory

In the absence of a viable theory of quantum gravity, is it possible to describe some effects involving the gravitational field at quantum level? The answer is yes!

- An Effective Field Theory (EFT) is a type of approximation to a quantum field theory.
- An EFT includes the appropriate degrees of freedom to describe physical phenomena occurring at a chosen energy scale, while ignoring substructure and degrees of freedom at higher energies.

Quantum corrected potential

Within context of effective field theory, it is possible to derive the leading quantum corrections to the Newtonian potential:

$$V_{N}(r) = -\frac{Gm_{A}m_{B}}{r}$$
 Newtonian
potential
$$V_{E}(r) = -\frac{Gm_{A}m_{B}}{r} \left[1 + \left(\frac{k_{1}}{r} + \frac{k_{2}}{r^{2}}\right) + O(G^{2}) \right]$$

Quantum corrected
potential
$$k_{1} = \kappa_{1} \frac{G(m_{A} + m_{B})}{r} = \kappa_{2} (R_{1} + R_{2})$$

κ_i	one-particle reducible	scattering	bound-states
κ_1	-1	3	$-\frac{1}{2}$
κ_2	$-rac{167}{30\pi}$	$\frac{41}{10\pi}$	$\frac{41}{10\pi}$

$$k_1 \equiv \kappa_1 \frac{G(m_A + m_B)}{c^2} = \kappa_1 \left(R_A + R_B \right),$$
$$k_2 \equiv \kappa_2 \frac{G\hbar}{c^3} = \kappa_2 (l_P)^2,$$
$$l_P = \sqrt{\hbar G/c^3} \approx 1.616 \times 10^{-35} \mathrm{m}$$

5

Classical Lagrangian points

L₁, L₂, and L₃: unstable

L₄ and L₅: stable

Quantum corrections on Lagrangian points (1)

• Quantum corrections on Newtonian non-collinear Lagrangian points:

Quantum corrections on Newtonian non-collinear Lagrangian points					
L_i	One-particle reducible	Scattering	Bound-states		
	$r_Q - r_{cl} = -2.96 \text{ mm}$	$r_Q-r_{cl}=8.87\;\mathrm{mm}$	$r_Q - r_{cl} = -1.48 \text{ mm}$		
L_4	$x_Q - x_{cl} = -2.92 \text{ mm}$	$x_Q - x_{cl} = 8.76 \text{ mm}$	$x_Q - x_{cl} = -1.46 \text{ mm}$		
	$y_Q - y_{cl} = -1.73 \text{ mm}$	$y_Q - y_{cl} = 5.18 \text{ mm}$	$y_Q - y_{cl} = -0.864 \text{ mm}$		
	$r_Q - r_{cl} = -2.96 \text{ mm}$	$r_Q - r_{cl} = 8.87 \text{ mm}$	$r_Q - r_{cl} = -1.48 \text{ mm}$		
L_5	$x_Q - x_{cl} = -2.92 \text{ mm}$	$x_Q - x_{cl} = 8.76 \text{ mm}$	$x_Q - x_{cl} = -1.46 \text{ mm}$		
	$y_Q - y_{cl} = 1.73 \text{ mm}$	$y_Q - y_{cl} = -5.18 \text{ mm}$	$y_Q - y_{cl} = 0.864 \text{ mm}_{_7}$		

Quantum corrections on Lagrangian points (2)

• Collinear Lagrangian points:

Quantum corrections on Newtonian collinear Lagrangian points				
L_i	One-particle reducible	Scattering	Bound-states	
L_1	$r_Q - r_{cl} = -1.23 \text{ mm}$	$r_Q - r_{cl} = 3.70 \text{ mm}$	$r_Q - r_{cl} = -0.617 \text{ mm}$	
	$x_Q - x_{cl} = -1.23 \text{ mm}$	$x_Q - x_{cl} = 3.70 \text{ mm}$	$x_Q - x_{cl} = -0.617 \text{ mm}$	
L_2	$r_Q - r_{cl} = -0.783 \text{ mm}$	$r_Q - r_{cl} = 2.35 \text{ mm}$	$r_Q - r_{cl} = -0.392 \text{ mm}$	
	$x_Q - x_{cl} = -0.783 \text{ mm}$	$x_Q - x_{cl} = 2.35 \text{ mm}$	$x_Q - x_{cl} = -0.392 \text{ mm}$	
L_3	$r_Q - r_{cl} = -2.96 \text{ mm}$	$r_Q - r_{cl} = 8.89 \text{ mm}$	$r_Q - r_{cl} = -1.48 \text{ mm}$	
	$x_Q - x_{cl} = 2.96 \text{ mm}$	$x_Q - x_{cl} = -8.89 \text{ mm}$	$x_Q - x_{cl} = 1.48 \text{ mm}$	

Laser ranging technique

- Very short pulse of light is fired towards satellites equipped with cube corner retro-reflectors.
- The round trip time of flight is measured.

Boosting the metric (1)

- In 1971 Aichelburg and Sexl developed a method to describe the gravitational field associated to a massless point particle moving at the speed of light.
- Boosting procedure to Schwarzschild-de Sitter metric ($\Lambda = \frac{3}{a^2}$)

$$ds^{2} = -\left(1 - \frac{2m}{r} - \frac{r^{2}}{a^{2}}\right)dt^{2} + \frac{dr^{2}}{\left(1 - \frac{2m}{r} - \frac{r^{2}}{a^{2}}\right)} + r^{2}(d\theta^{2} + \sin^{2}\theta \, d\phi^{2})$$
(G=c=1)

 A de Sitter spacetime in four dimensions can be considered as a fourdimensional hyperboloid embedded in a five-dimensional Minkowski spacetime

Boosting the metric (2)

(two dimensions suppressed)

The Kretschmann invariant

The Kretschmann invariant is not defined unless

$$Y_1^2 + Y_2^2 + Y_3^2 + Y_4^2 > a^2$$

The "boosted horizon"

Geodesic equation

$$\ddot{Y}^{\mu}(s) + \Gamma^{\mu}_{\ \nu\lambda} \dot{Y}^{\nu}(s) \dot{Y}^{\lambda}(s) = 0$$

"Boosted horizon": a barrier, surrounding the 3-sphere of radius *a*, where all geodesics, despite maintaining their completeness condition, are pushed away — antigravity effect

Initial Conditions: $Y_1(0)=Y_3(0)=Y_4(0)=0, Y_2(0)=5;$ $Y'_1(0)=Y'_3(0)=Y'_4(0)=0, Y'_2(0)=-0.7;$ a=1, m=1, v=0.9.

location of the "boosted horizon"

Conclusions (1)

• We have derived the following **GR and quantum corrections** on Lagrangian points

L_i	General Relativity-Newton	Quantum-General Relativity	Quantum-Newton
L_1	0.19 mm	-0.62 mm	-0.43 mm
L_2	-0.32 mm	-0.39 mm	-0.71 mm
L_3	-0.04 mm	-1.48 mm	-1.52 mm
L_4	(2.73 mm, -1.59 mm)	(-1.46 mm, -0.86 mm)	(1.27 mm, -2.45 mm)
L_5	(2.73 mm, -1.59 mm)	(-1.46 mm, -0.86 mm)	(1.27 mm, -2.45 mm)

Conclusions (2)

• Theoretical predictions presented here are testable in light of modern advances in lunar laser-ranging techniques, but several perturbations, of gravitational and non-gravitational nature, may (slightly) modify such predictions.

NEWREFLECTIONS experiment

Conclusions (3)

- I have described the procedure of boosting a metric and I have explained how this can be applied to the Schwarzschildde Sitter metric.
- I have brought the boosted Schwarzschild-de Sitter metric to its usual four-dimensional form and then I have applied numerical calculation to this form of the metric.
- Main results
 The singularity 3-sphere where the Kretschmann invariant is not defined
 The "boosted borizon"

The "boosted horizon" (antigravity effects)

Conclusions (4)

- References:
- 1. E. Battista, "Extreme Regimes in Quantum Gravity", PhD thesis, arXiv:1606.04259.

2. E. Battista, *"Extreme Regimes in Quantum Gravity"*, Nova Science Pulishsers, New York, ISBN 978-1-53612-451-4.

